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The motion of a particle in two dimensions in a fluid is considered. The fluid 
flow is given and time independent. The complex fluid velocity potential can be 
viewed as a conformal transformation and after rescaling the time, the motion 
of the particle is uniform and rectilinear in the absence of diffusion. When diffu- 
sion of the particle also takes place the same ideas lead to a useful self-consistent 
approximation based on the average motion of the particle. 

KEY WORDS: Diffusion in two-dimensional fluid; conformal transformation 
in fluids. 

1. INTRODUCTION 

We cons ider  the m o t i o n  of a part icle  in two d imens ions  suspended  in a 
fluid where the fluid flow is given an d  t ime independen t .  The  presence of 
the part icle  does no t  affect the flow. The  part icle  will tend to move  with the 
local fluid velocity, bu t  it may  also be subject  to a r a n d o m  force of the 
B r o w n i a n  type so that  diffusion of the part icle  can  also take place. The  
part icle  could  also be cons idered  to be a vortex which is free to move  at 
the local fluid velocity. The  fluid flow is de te rmined  by a complex  velocity 
po ten t ia l  W(z)  ( z = x +  iy) a n d  we will be interested in the cases where the 
flow is due  to vortices or sources a n d  sinks when  

- i  
W ( z )  = -~n ~i re, ln(z  - zi) vortices 

= ~. m i ln(z  - zi) sources and  sinks 
i 

(1) 

t 84 Prescott St., Cambridge, Massachusetts 02138. 
2 Physics Department, Rutgers University, Piscataway, New Jersey 08855. 

377 

822/78/I-2-26 0022-4715/95/0100-0377507.50/0 �9 1995 Plenum Publishing Corporation 



378 Mittag and Stephen 

where zi is the position of the ith vortex or source and sink, xi is the 
circulation, and m; is the strength of a source or a sink (m,.>0 for a 
source). Other forms of W are also possible, but these seem to be the 
most interesting situations. The complex fluid velocity v_ = v x - i v . , , =  
OW/Oz = W'. 

In this paper we use the fact that the equations of motion of the 
particle can be written in Hamiltonian form. This was pointed out a long 
time ago by Lamb ") and Lin ~-) and also used by Onsager. c3) These latter 
two papers introduced us to the subject. This problem is also being studied 
by Koplik and Redner ~4~ who suggested some of the examples used here. 

2. M O T I O N  IN THE A B S E N C E  OF D I F F U S I O N  

We first consider the motion of the particle when there is no random 
Brownian motion so that the particle moves with the local fluid velocity 
and its equation of motion is 

& 
- - =  W'* (2) 
dt 

The quantity - i ( W -  W*) is the stream function and is conserved: 

d ( W -  W * ) =  W 'dz  dz* 
dt - -~-  W'* at ---0 (3) 

We can view the relation W =  W(z) for the complex velocity potential 
as a conformal transformation from the z to the W plane. In the W plane 
the flow is uniform and constant along the real axis and the particle will 
move in a straight line at constant velocity. It is clear that time will proceed 
differently for the z particle and W particle. We call the time scale for the 
W particle T and show below that the relation between T and t is 

dT 
dt [W'I2 Iw12 (4) 

where the right-hand side depends on the trajectory of the particle. 
This relation has been introduced previously in the conformal 

representation of the classical mechanics of a particleJ 51 We now have 

d W  d W  dT , dz 
dt dT  dt - W ~-~= I W'l 2 (5) 
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Thus 

dW 
= 1, W =  T +  W o (6) 

dT 

where Wo is the initial value of W at T =  t = 0. In the W space the particle 
has constant velocity of unity along the real axis. By inverting the relation 
W= W(z) we can now express the right-hand side of (4) as a function of 
T and this equation can be integrated to give the relation between T and 
t with the initial condition T =  t =0.  The motion of the particle is then 
determined by (6). 

In the case where the flow is produced by vortices of circulation xi we 
have the integral 

;c W, dz = f?O w, dZ dt fro - ~ - ~ d T =  dr= ~ +xi (7) 
/ in  C 

where C is a closed trajectory of the particle and the sum is over the 
circulations of the vortices enclosed by the trajectory with the signs deter- 
mined by the sense of the contour. Thus the period of the motion in the 
scaled time is T O = ~-~,iin C ~ hTi and is determined by the total circulation of 
the enclosed vortices. The area enclosed by the trajectory is 

2i o , , ' I T  (8) 

Similarly the length L of the trajectory can be shown to be 

o dT (9) 
L =  FW'I 

Now consider a trajectory which ends up at a sink. The integral 
~c W'dz along such a trajectory will diverge, showing that the scaled time 
to reach the sink is infinite. 

Thus the motion of the particle is very simple in terms of the scaled 
time T and it is only necessary to integrate (4) to relate T to the real time 
t. We consider some examples. 

(a) Two equal vortices W=(-ix /2n) ln(z2-a2) .  We have two 
vortices located at z = + a. Then, using (6), we have 

Z 2 = a 2 + e 2~iw/K = a 2 (  1 + p e  2~ir/~) (10) 

where p = (x o -  a2)/a 2 and Xo is the initial position of the particle, which, 
without loss of generality, we take on the real axis with ]Xo l >a .  This 
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expression shows that for p2 < 1 the orbit is periodic in T with period x and 
remains close to one or the other vortex. For p2 > I the orbit encompasses 
both vortices and the period is 2x. 

To relate the time scales, we have 

-ix z -iK W' - -  e-2"iw/~(a2 + e2"iw/~) l/z (11 ) 
7~ Z 2 -- a 2 -- 

and using (6), Eq. (4) becomes 

~ - =  1 +p2 + 2p cos (12) 

The time scales are then related by 

na2pZ f.r/~ do~ rtaZp 2 ( 2 7 t T )  
t = x ( l + p ) ~ o  ( l_kZsin2~)l /2 ~ c - ~ p j F  ---x--,k (13) 

where kZ=4p/(! +p)2 and F is the elliptic integral of the first kind. 
If p2< 1, the motion remains close to one or the other vortex and the 

period is To= x. In real time from (13) the period is 

2rca2p 2 
t o - -  K(k)  (14) 

•(1 +p)  

where K is the first complete elliptic integral. The area enclosed by the orbit 
from (8) is 

a 2 
A = 2(1 + p)----------5 I-(1 +p)2 E ( k ) -  (1 _p2 )  g(k)]  (15) 

where E is the complete elliptic integral of the second kind. The length of 
the trajectory from (9) is 

L = rcapF(�88 �88 1, p2) (16) 

where F is a hypergeometric function. 
If p2> 1, the motion encompasses both vortices, the period is 2to, the 

area of the orbit is 2A, and the length is 2L. For p = 1 the particle is on 
the separatrix and the time to reach the origin (stagnation point) is infinite. 

(b) Ring of n vortices W= (-i~:/27t)In(z"-a").  The previous results 
are easily extended to the case of n vortices in a ring of radius a. We have 

z " - a " =  (x '~-a")  e 2nir/K (17) 
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where Xo is the initial posit ion of the particle with Xo > a. The time scales 
are related by 

4zta2p2 f ~r/~ dot 
t -n2x(1  +p)21"-l)/"~o (1 - k  2 sin 2 ot)~,,- 1)/,, (18) 

where p =  (xg-a")/a" and kZ=4p/(l  +p)2. Again the mot ion is confined 
to the vicinity of one vortex if p2 < 1 and the period is T O = x or 

4~2a2p2 ( n - 1  1 2' 
t~ +p)Z("-'~/"F n l 'k2 (19) 

where F is a hypergeometr ic  function. If p 2 >  1, the mot ion  extends around 
the ring and the period is nt o. Other  properties may  be obtained as in 
example (a). 

(c) Two vortices of opposite circulation W =  (-ix/2rO ln((z-a)/(z+ a)). 
We have two vortices of opposite circulation located at ___a. The mot ion  is 
always confined to the vicinity of one or the other vortex and 

(Xo + a) + (Xo - a)e 2~ir/~ 
z = a (Xo + a) - (Xo - a)e 2~ir/~ (20) 

where Xo is the initial position of the particle on the real axis. The time 
scales are related by 

4xa2p 2 [ pot(T) .-] 
t h:(1 _p2)3/2 t a n - '  ot(T) 1 +ot2(T)_] (21) 

2 2 2 where ot(T) = I-( 1 - p ) / (  1 + p ) ]  1/2 tan(nT/x)  and p = (x o - a )/(x o + a z). 
The period is To = x or  

4n2aZp 2 
to -- re(1 _p:)3/2 (22) 

(d) Line of vortices W=(-ix/2rt) lnsin(nz/a) .  We have a line of 
identical vortices at z=na,  where n is an integer. Then from (6) 

sin n__fz = i sinh ztY~ e 2~ri7-/~: (23) 
a a 

For  simplicity we assume the particle starts on the imaginary axis at Yo and 
set si = sinh(nyo/a). Then from (4) 

2a2s 4 ,_~T/~ dot 2a-si ( 2 ~ _ )  
t=zt~c(l+s~)fo (l_k2sin,_ot)~/2- x ( l + s ~ ) F  ,ki  (24) 
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where k~ = 4s~/(1 + s~) 2. For  s 2 < 1 the motion is confined to the vicinity of 
a single vortex and the period is 

8a2s~ 
to = K(k,) (25) 

~x(1 +s~)  

For  s~ > 1 the motion is along the line and is periodic with period to. 

(e) Sink at the origin W = - m log z. This problem is of course trivial 
and the particle ends up at the sink in a finite time. It illustrates a new 
feature of the time scale T. In terms of T 

z = e - W / ' = X o  e - ~ "  (26) 

and as T--, oo the particle reaches the origin from the initial point Xo. 
Equation (4) is 

dT m2 e 2r/" (27) 
dt x~ 

which is integrated to give 

,Y --~-X 0 

2m "~ 1/2 
1 x~ ) (28) - - - g -  t 

(f) Source and sink W = m l o g [ ( z + a ) / ( z - a ) ] .  We have an equal 
sink and source at + a ,  respectively. Solving for z and using (6), we have 

( z o + a ) e r / " ' + z o - a  
z = a  (zo+a)er/ , ,  ( z o - a )  (29) 

where z o is the initial position of the particle. As T--* oo the particle ends 
up at the sink. The real time is determined by 

4a 2 ~ r/m dx 
t = - -  (30) 

m ~o F(x) 

where 

F(x) = 4 +pq* +p*q - 2(p + p * ) e  x - 2(q + q*)e -x  + IPl 2 e z~ + Iql 2 e-2X 

(31) 
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and p = q -  l = (z ~ + a)/(Zo- a). The time for the particle to reach the sink 
starting at Zo is 

4a 2 t "~ dx 
t~ =-m-- Jo r(x)  (32) 

These examples should be sufficient to illustrate the power and utility of 
this method. 

3. M O T I O N  W I T H  D I F F U S I O N  

In this case the particle moves with the fluid and is also subject to a 
random force f ( t )  and (2) is replaced by 

dz 
- - =  W*' + f * ( t )  (33) 
dt 

where f has the correlation function 

( f ( t )  f * ( t ' ) )  = 4 D 6 ( t -  t') (34) 

It is more convenient to use the equivalent Fokker-Planck equation for the 
distribution P(z, z*, t) which satisfies 

OP 0 0 02 
- ~  + ~z W*'P +~z* W ' P = 4 D  o--Z~z * P (35) 

This equation, except in some rather trivial cases, is not easily solvable. 
Our previous considerations lead to a useful self-consistent approximation. 
Introducing the coordinate W= W(z) in (35), we get 

OP W' z [ 0 0 02 
~ - + 1  I ~ j -~+~-~- -g -4D Og';-OW*) P = 0  (36) 

In the stationary situation (OP/Ot = 0) the problem in the W space is 
simple and requires the solution of a problem with constant flow along the 
real axis. It is ( W = u + iv) 

0 O { 02 02 
~ u - \ ~ u 2  + ~--~v2)l P = 0  (37) 

Returning to the  time-dependent case, we let 

<l W'12>-I e(z,z*, t)IW'12dzdz * (38) 
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which is the average square drift velocity of the particle. We now introduce 
a new time scale according to the average motion of the particle 

dT 
d--7= (I W'12) (39) 

When this is introduced into (36) we get 

OP [W'[2 ( c3 c3 02 ) 
aT ~ ( l~- ; j2)  ~ - -~+f f -~- -g -4Ool4 ;~-W,-P=0  

We now neglect fluctuations in the square of the drift velocity and the 
above equation becomes 

c3P [ 0 0 02 \ 
~-~ + ~,~-~ + ~-~-g--40 c~ I,V~ W, ) P = 0  (40) 

This is the ordinary diffusion equation with solution (in infinite space) 

' ( ' ) -~D-~ [ w -  W o -  T[ 2 P(W, IV*, T)=~D---~ex p (41) 

where IVo is the initial value of W at T =  t = 0. It remains to integrate (38), 
where 

(IW'lZ)= f e(w, w*, T)[W'I2dWdW * (42) 

is a function of T. Again the motion is very simple in terms of the scaled 
time T. 

An estimate of the neglected terms in (40) requires that Dt/12= 
R-~ < 1, where l is the length scale associated with the flow. Thus (40) is 
exact in the absence of diffusion and accurate for short times in the absence 
of fluid motion. R plays the role of the Reynolds number in this problem. 
As an example we consider the case of a source and a sink 

Source and sink W= - m  l o g ( ( z -  a)/(z + a)). This transformation 
maps the z plane into the infinite strip - n m < v < n m  in the W=u+iv 
plane. The source and sink are at u = -T- ~ ,  respectively. Suppose particles 
are flowing out of the source at a uniform rate 2romP o, so that we have a 
steady state. The only solution of (37) periodic in v and not diverging at 
u = 4-ov is P = Po a constant. Thus in this steady state the concentration 
of particles is everywhere constant. The complex particle current is 

J+ =J"+iJ"=P~176 1 "  " z*+a z*-i ) a  (43) 
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We now consider the time-dependent problem where the particle at 
t = 0  is at Zo. In the W plane u o + i V o = - m l o g ( ( z o - a ) / ( z o + a ) ) .  The 
appropriate normalized solution of (40) which is periodic along the v axis 
is 

1 ~, e ( i n ( v  - v o ) l m )  - ( D T n 2 1 m 2 )  e - ( u -  uo - T ) 2 / 4 D T  

P(W, W*, T)= (16rt3DTm2)U 2 . . . . .  

(44) 

where n is an integer. Using this distribution, it is easy to integrate (42) and 
the relation between the time scales (39) becomes 

4a 2 f r/,,, dx 
t = - ~ -  Jo F,(x) (45) 

where 

Fl(x) = 4 + (pq* +p*q)e -2~" - 2(p + p*) e" - 2(q + q*)e -x 

+ [p[2 e2X(! +~)q_ iql 2 e-Z,-cl -~o (46) 

= 2D/m and p and q have been given below (31). As T ~  oo the particle 
reaches the sink, so the average time to reach the sink is 

4 a 2 ~  ~ dx 
tar = - -  (47) m 2 G ( x )  

The particle distribution in the z space is 

P(z, z*, t ) =  P( W, W*, T) lW'(z)[ 2 (48) 

4. OTHER T R A N S F O R M A T I O N S  

In Section 2 we chose to map the flow into the motion of a particle 
in a uniform flow along the real axis. Other possible mappings are also 
possible. Suppose we have found the motion of the particle in a given flow 
described by a complex velocity potential W(z). We may now make a 
conformal transformation z = f ( ( )  to get a different flow described by the 
complex velocity potential U(~)= W(f(()) .  From (2) we have 

dz d~ f ,  dW* 1 dU* 
(49) 

dt dt dz* f ' *  d~* 
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We now introduce a new time scale z for the ( particle determined by 

From (49) 

dt 
~ =  If ' l  2 (50) 

d( dU* 
dr d(* (51) 

and the motion of the ( particle in the new flow is described by an equation 
of the same form as (2). 

5. C O N C L U S I O N S  

The complex velocity potential W = W(z) can be viewed as a conformal 
transformation. A particle which obeys (2)executes the very simple uniform 
rectilinear motion W =  T +  Wo in the W space in terms of the new time T. 
This leads to a simple and powerful method for integrating equations of 
motion of the form (2). Simple solutions are obtained in the case where the 
relation W =  W(z) can be explicitly inverted. We mention some other simple 
cases which are easily integrable. (a) W =  (- i tc /2n)  ln [ (z ' - - a2 ) / z" ] ,  with 
n = 1 or 2 corresponds to two equal vortices at ___ a and a negative vortex at 
the origin of strength xn. (b) W =  (-ix/2n) ln((z" - 1 )/(z" + 1 )) corresponds 
to a ring of 2n vortices of alternating sign. (c) W =  (-ix/2n)In tan(nz/a) 
corresponds to a line of vortices of alternating sign. 

What we learn from these examples is that small periodic orbits are 
the most common and that generally large orbits require special conditions. 
Thus, mixing of the passive scalar will not readily occur unless large-scale 
fluid flow and diffusion are both present. When diffusion of the particle also 
takes place the same ideas lead to a simple and useful self-consistent 
approximation based on the average motion of the particle. 
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